
Unconventional scaling theory for domain growth in the alternating bond Glauber-Ising chain

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 L201

(http://iopscience.iop.org/0305-4470/24/4/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 14:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A: Math. Gen. 24 (1991) L2OILL206. hinted in the UK 

LElTER TO THE EDITOR 

Unconventional scaling theory for domain growth in the 
alternating bond Glauber-king chain 

S CornelltB, M DroztS! and N Menyhirdf 
T Departemem de Physique Thhique ,  Univenitt de Genbe,  CH-1211 Genkve 4, 
Switzerland 
+Central Research Institute for Physics, PO Box 49, H-1525 Budapest, Hungary 

Received 30 November 1990 

Abstmct. The domain growth after a quench is controlled by an exponent which generally 
has very broad universal properties. We investigate the alternating bond king chain with 
Glauberdynamics, and find that its growth exponent is universal, even though the dynamical 
critical exponent L is non-universal. We show that usual scaling theory can be reformulated 
to account for the above findings. 

Much effort has been expended in recent years in attempting to explain the behaviour 
of a system initially in a high temperature equilibrium state and suddenly quenched 
in its ordered phase, below the coexistence curve [l]. 

Two types of phenomena can occur, depending on whether one quenches into a 
metastable state (homogeneous nucleation) or  an unstable state (spinodal decomposi- 
tion), although there is no sharp separation between the two cases [2]. Moreover, two 
time regimes should he distinguished: the early time one, and the late time one. 

An interesting feature of this problem is that, in the late stage regime, this compli- 
cated non-equilibrium phenomenon exhibits simple scaling properties, both for 
nucleation and spinodal decomposition. This is clearly seen in the dynamical structure 
factor S(q, 1 ) .  The usual scaling theory asserts that after some transient time t,) following 
the quench S(q, f) behaves as 

S(q, 1)' L(l)d@(c7L(t);  t l r )  (1) 

L ( 1 ) - P  (2) 

where 

is the unique length characterizing the domain growth at time t, x is the growth exponent 
and T a characteristic timescale. There are universality classes for x, whose characteris- 
tics have been made explicit by Bray [3]. Moreover, the dependence of the crossover 
function 

As noticed recently by Menyhird 141, one-dimensional king systems with short 
range interactions have the property that the growth exponent x is related to the 
dynamical critical exponent z, which characterizes the relaxation time T~ of the order 
parameter in the vicinity of a second-order phase transition. Namely, 

on its second argument is very often negligible. 

r c -  5' ( 3 )  
where 5 is the correlation length. 
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The explicit relation, which has been tested for different chains with homogeneous 
coupling constants and sequential or parallel dynamics [4], reads 

z =  l /X.  (4) 

Moreover, it has been shown [S, 61 that the critical exponent z is not always universal 
for one-dimensional king chains with nearest-neighbour interactions. Indeed for a 
chain with alternating ferromagnetic couplings JA > Je, one finds for Glauber dynamics 
that z = 1 + JA/JB instead of 2 for homogeneous couplings. 

One is then led to ask if the relation (4) is still valid, which would imply a 
non-universality for the growth exponent x, or if this one-length scaling theory described 
above should be corrected. 

This is the question we are addressing in this letter, which is organized as follows. 
First we define the model; we then go on to compute analytically the structure factor 
and the kink density. Next, we report the results of numerical simulation. We end with 
a discussion of the scaling theory, and some conclusions. 

The model we study is a one-dimensional king model, with Hamiltonian 

Ye= -1 Jjuiu;+l (5) 

...L--- I -A, ""A *I.- ,. ̂.._ 1:"" "l+a-..",al.. . ,"I. ._^ r *"A r : e nlllll u j - - a ,  ',,,U ,,.r '""F'....6 I"..I."..LI aa.,".,.u ".L'...YLU.J , Y . " I l  .,A Y.." .,B, ..U. 

J,, ieven 
Js i o d d  

JA >. JB. J, = 

The system is in contact with a heat bath at temperature T, which causes the system 
state {U} to change by the flipping of single spins. 

111c pruuiloiiiiy per umt ~ m i c  w ;  ~ u r  ine 1111 >prri tu rriy iS  ~ ! ~ u ~ c i i  LU sartsty LIIC- 

condition of detailed balance, so that the system relaxes to equilibrium. We make the 
choice corresponding to that of Glauber [7] 

7L. ---L-L:*:... -.-..-:A .:-- 111 '-- *L. ILL .-:- .̂  I I:-  ' "L _.̂ _ .^ --.:-r.. .L- 

w, =f(l  - u:(,T-,yY+ uj+ly!J) (7) 

with y:- f(tanh(J. + Jj-,)/ Ti tanh(J; - Jj-])/ T) in suitable time units. 
,,,= uy,m,,,rc: GLLLIGtIL UEilld"lU"l "1 ,,,,> sysrr;,,, I l d D  UTS11 JLUUlG" LJ, U,, O L l U  L I l G  

critical exponent z, defined by T-C', where 6 is the correlation length and T a 
characteristic relaxation time, is found to be 1 + Ja/JB. This non-universal form is 
explained by the requirement of a non-universal activation energy for domain wall 
random-walk processes, and is therefore only present since the critical temperature is 
absolute zero. 

factor S(q, 1 ) .  Both of these are related to the spin-spin correlation function (ujq) 
(where (. . .)represents an ensemble average). The equation of motion ofthe correlation 
function is 

TI.^ i :- <-I.-..:-..- -0 .L:^ -..-.,.- I..... I."".. Î.. A L . 4  rc L1 .̂.A +I.- 

\XI. rh-ll ot..i., t x w n  -...rr---:oo rrf thn r . , o t m m  thn L i n L  A n n e ; + n  Y n n A  +ha rtnirttire .." .,..".. lLyuJ -,," Y."p..LL..." -. ... " "J"L'..', ...*......."-.."...I .. ".." ... _"..-_I-." 

By virtue of (6) ,  this function is translationally invariant over even multiples of the 
lattice parameter only. The correlation function is therefore dependent not only on 
the distance x = j - i, but also on whether i, j are odd or even. We therefore have four 
distinct correlation functions, two of which are only defined for x even and two defined 
for x odd only. We eliminate the odd-even and even-odd correlation functions to 
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obtain an equation for the even-even functionf, (which is always equal to the odd-odd 
function when starting from thermal equilibrium): 

where x assumes only even values, and 

Equation (9) differs from that obtained for the uniform system studied by Bray [8] in 
the temperature-dependent prefactors (corresponding to energy barriers) and the 
presence of second-order derivatives with respect to time. 

We now calculate the structure factor S(9, 1) after a deep quench from infinite 
temperature to a low, finite temperature where the correlation length is ( = 1 / ~ .  We 
first change the length scale by x+x’ -  x/2 so that it assumes all integer values. Such 
rescaling will not, of course, affect the exponent we shall obtain. We follow the method 
of integral transforms, as used by Bray [8]. Define the Fourier transforms 

S(9,O =Z x exp(iqxlf f x -  -Ljo2rS(9 ,  257 f )  exp(-iqx)d9 (11) 

& q , s ) = w  jomexp(-.mr)S(q, r )dr  (12) 

and Laplace transforms 

where w = 4yAyB reduces to an Arrhenius factor 4 exp(-2( Ja - J B ) /  T) at low tem- 
peratures. Equation (9) is not valid at x = 0, where instead we have 

1 =fo =s lo2- s( 9, s) d9. 
2rr 

Starting fro= cq.ti!ibrkm 8t infinite tempera!L.:e, i.e. B tata!!y uxor:e!ated state, -e 
have fx(0) = S,,, and therefore through (8) we have f(0) = 0. 

Equation (9) yields an equation of motion for 2, which contains an integral term 
coupling all modes. Substituting for 2, we find that with the above choice of initial 
conditions we can evaluate the integral in equation (13) and eliminate the mode- 
coupling term in the equation of motion for s. Finally, we find 

[ ( 4 s  + US‘ + 2  cosh K) ’  - 41’” 
s(9’s)= s ( 4 s + o s 2 + h q )  

where Aq=2(cosh K - C O S  4) .  

we make the following observations. 

when s a  U - ’ ,  and therefore do not contribute for times f >> 1. 

We are unable to evaluate the inverse Laplace transform in this general case, but 

(i) =,e teiiiij W$2 that aiije *ie ;he jecofid-oidei &*<a*fe ifi ( 9 )  ifi+gfi;ficant 

(ii) F o r s < < l , q < < l , K < < l ,  
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yielding 

I/’ eXp(-K20) 
S ( q , 1 ) = 2  - (:) q2+K2 

X (:dy(y+ 1)-’I2[K2 eXp(-K’@’)+q’ eXp(-(q2+ K2)o+q2@’)] (16) 

with 0 = yAyst, which is result (21) of Bray [XI. The domain length therefore scales 
like t“’ in the region w-’<< t<< K‘t’. From (i), the presence of the second derivative 
in the equation of motion is irrelevant in this regime. 

We can therefore see that, in the scaling region, the presence of the alternating 
bonds merely changes the timescale by an Arrhenius factor. 

Similar results can be obtained for the density of kinks on weak or strong bonds 
( K ,  and K ,  respectively) [9, IO]. The result is of the scaling form 

K A / , ( f ) - K A / B ( W ) =  tC’/’ exp( -eK2)g( OK’) (17) 

where g is slowly varying in the scaling region. The limits on the scaling region are 
the same as for the structure factor. 

The above results assumed an initially uncorrelated state. If the initial state has 
correlations of range I, these will be destroyed after a time - 1 2 L 1 ,  and the above 
scaling form is then valid for t >> /’&’ [9,10]. 

The approximations made in the above analytical approach can be compared with 
the results of numerical simulation. The dynamic evolution of a chain of size 1000 
spins was simulated by the Monte Carlo method. This length is sufficient for finite-size 
effects to be negligible, since the correlation length never exceeded a value of about 
30. The ratio A/ B = 2 was chosen, corresponding to z = 3. ‘Checkerboard‘ updating 
was used, with the lattice split into two interlocking sublattices, largely to circumvent 
the need for generating too many random numbers. The random number generator 
used was based on that of Kirkpatrick and Stoll [ 111. A random initial condition was 
chosen, and the temperature chosen so that the final correlation length was 33.3 lattice 
units. The system was allowed to evolve over 5000 Mcslspin. We therefore expect 
domain scaling in the region 30<< t e  30000, where time is measured in units of 
Mcs/spin. The results were averaged over 4000 independent runs. 

The kink densities K A  and K ,  are plotted in figure 1, together with the inverse 
Bragg peak 1/S(O, t ) ,  on a log-log scale. Following equation (161, the final equilibrium 
values for the kink densities have been substracted from the results, and we have 
corrected the overall exponential decay factor, in order to give a better fit. The scaling 
behaviour is seen for 100<r<3000. The kink densities at the latest times are about 
twice their equilibrium values, with the Bragg peak half of its equilibrium value. The 
results clearly support the scaling form with exponent $, rather than l / z = f .  

A lower final temperature would give a wider scaling region, but the divergence of 
the Arrhenius factor associated with domain wall diffusion processes would mean that 
computing time would be greatly increased. 

We can now interpret the results in terms of a scaling theory. The analytical solution 
(16) shows that, in the low temperature limit, two timescales enter in the scaling form 
of S(0, f), namely T ,  = .$“-” and 7 = 5’. For t >> T , ,  S (  r, 0) is of the form 
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Figure 1. The Bragg peak S(0, I )  and corrected kink densities KA and K, as a function 
of lime, on log-log axes. The gradidnts in the scaling region are 0.49, -0.518, -0.508 for 
S(0, f ) ,  K,, K, respectively. 

with i =f.  Thus, one sees that the usual scaling form is recovered providing thevariable 
I by a rescaled one I defined as: 

i = t e x p  -- ( 3 
where 

Then one can write 

with $ ( y ) +  (constant) when y + 0 and 7 = &'.'. 
The rescaling of t in f, expresses the fact that the inhomogeneous couplings Ja > J e ,  

introduce activation energy barriers into the problem. This is an explicit example of 
a dangerous irrelevant variable described by Bray [3]. 

On the other hand, in the region of validity of this scaling form we would expect 
there to be only one important relaxation time, namely T. We would then expect S(0, t) 
to be of the scaling form 

where S(O,m)=[= d/' implies that x =  I / z  

that '4 assumes the unusual form 
In order to be consistent with the result that S(0, / ) - I '  for l / r < <  1, we require 

W Y )  -Y "$ (Y)  (23) 
where 

- 1  
(24) a = x - -  

z 
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and $(O) = (constant). This is consistent with (21) since 

A 1  &.-+- 
2JB f 

provided $=$. We therefore see that the two pictures (conventional theory with 
rescaled time or unusual scaling theory with non-universal critical exponent) are 
completely equivalent. 

The above simple model shows explicitly that dynamical scaling theory may be 
applied provided some care is taken when activated processes are present. The usual 
scaling theory is recovered if time is rescaled with an Arrhenius factor. 

A similar problem is encountered in the case of a uniform Ising chain under 
Kawasaki dynamics [IZ]. Here the growth exponent is f =f, as in higher dimensions 
[9] and the energy barrier is A = 41. This is consistent with equation ( 2 5 )  since z = 5 
[13]. However, in case of alternating bond the energy barrier is A=41,, which is 
consistent with z =3+2JA/JB (as obtained in [SI)  rather than the more accepted result 
of [14]. Either the scaling theory for this system is more complex, or the growth 
exponent is non-universal. 

One of us (NM) would like to express thanks for the kind hospitality she enjoyed at 
the Department of Theoretical Physics of the University of Geneva in September 1990, 
when this work was started. 
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